大概了解了规则后,乔喻便直接打开口浏览器,进入决赛地址,并登陆了自己的账号。
竞赛不是高考,早一分钟,晚一分钟都无所谓。
也占不了什么便宜,因为后台会自动计时,反正总共就只给了所有人八小时的做题时间。
而且是连续八小时。
也就是说只要计时一旦开始,就不能停下来了。
中间不管是吃饭、喝水、上厕所,都算在答题时间里面。
好在这对于一群年轻人来说并不是什么大不了的事情。
不管是初中生还是高中生,他们不一定跑的很快,但大都能坐的很稳。
……
很快乔喻便看到了决赛题目,第一题就让他很开心。
说实话,如果是换做解答出薛松教授那道题之前的乔喻,碰到这种题大概还会头疼。
倒不是这类题多难,主要是考了许多概念。
而且所需要深刻理解的概念。
比如子环的定义、对于矩阵环的理解、关于格的概念、模的同构分类以及有限生成性的理解等等这些……
但现在的乔喻,真就是强到可怕。
比如,根据给出的条件,乔喻立刻就判断出题目中给出的矩阵形状可以写成:
显然这类矩阵构成一个具备特殊代数结构的子环,可以设定为R。
再然后就简单了,其证明的核心无非就是判断有多少不同的&bp;R-格。
心里大概有了解题思路,乔喻也没急着动手开始答题,而是飞快的扫向,第二题,简单;第三题,也不难。
直到第四题才稍微顿了顿。
好家伙,这是求一个方程没有整数解的问题。
(今天插图次数用完了,不能给大家放题了,感兴趣的可以去看彩蛋章。
)
说实话,对于其他人来说,乔喻觉得大概的确挺难的。
但现在他发现只需要认真审题,这种证明题是真不难。
无非就是引入单位根与多项式表达,然后进行方程化简,分析代数数论背景。
甚至到了这一步,乔喻就已经能看出这个方程的根没有整数解了。
因为在方程化简那一步,可以把方程左边看作是某个多项式的因子分解形式,且每个因子都与&bp;p-次单位根的实部相关。
这些因子对应的是&bp;Chebhev多项式或与单位根相关的对称多项式。
而这类多项式通常具有非整数系数,所以基本可以推断出这些多项式的根不会是整数。
当然具体情况还是要证明的。
但只要通过模p算术进一步形式化就足够了。
所以这道题乔喻觉得也不算难。
第五题,线性代数的题型,无非是涉及到了拓扑群中的一些概念,难度是有的,但恰好属于乔喻的强项。
重点无非是选择无穷子序列并分析均匀收敛性。
说白了,乔喻认为这道题的出题人大概就是为了考察选手对于矩阵群的生成、矩阵序列的乘积行为以及在矩阵乘法下的收敛性问题的理解。
第六题,主要考点大概就是群表示理论中的模的直和分解、张量积运算,以及模的同构性及模的唯一性证明。
难点在于p-群作用下如何分析有限生成模的结构。
所以乔喻觉得只要理解了如何在不同模之间建立同构关系,这题也不算太难。
第七题,哦,没了……只有六道题。
这是大宇宙时代,众多文明在大宇宙中竞争共存。这一天,太空中漂流的逃生舱被发现,最后的战兵利昂带着神秘诅咒走进大宇宙时代,想当年,金戈铁马,气吞万里如虎,现如今,英雄无觅,新魂持刃求生。PS已完本巫师亚伯超凡大卫等书,品质保证,敬请收藏。...
吴一楠无意间看到老婆在自家楼下跟市委秘书激情拥吻,继而得知自己的副科长职位是市委秘书帮的忙,愤而跟老婆离婚,随之被撤职换岗,人生处于低谷之中。现场会上,吴一楠对刘依然产生好感,对她勇敢反抗和揭露领导...
上辈子余喜龄年纪轻轻便罹患癌症身亡,父兄皆在,却仿若孤家寡人。报恩奉献这些词伴随了她的一生,为了报恩年仅四岁的幼妹夭折,母亲病逝,到最后她的身体也被拖累至死。重生到十二岁这年,余喜龄决定自私一回,管...
...
又名惊我把连锁火锅店开进了始皇宫里我有美食红包群火锅店经营人姜晩容刚走上扩店暴富之路,却一朝穿成被继妹和渣爹推出顶罪的同名小可怜。人在秦朝开局车裂罪名帮太后赵姬渣了始皇他爹姜...
重回十五年前,林毅站在十字路口重新拥抱未来。既然都重生了,被倒追也很正常吧?...